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Stochastic boundary conditions in the deterministic Nagel-Schreckenberg traffic model
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We consider open systems where cars move according to the deterministic Nagel-Schreckenbffg rules
Nagel and M. Schreckenberg, J. Phy£,12221(1992] and with maximum velocity .1, which is an
extension of the asymmetric exclusion procé8SEP. It turns out that the behavior of the system is domi-
nated by two featureqa) the competition between the left and the right boundéby,the development of
so-called “buffers” due to the hindrance that an injected car feels from the front car at the beginning of the
system. As a consequence, there is a first-order phase transition between the free flow and the congested phase
accompanied by the collapse of the buffers, and the phase diagram essentially differs from #hag=fdr
(ASEP.
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I. INTRODUCTION a= B line (a, injection rate;B, extinction rat¢. All param-
eters have in common that they do not depend on the extinc-
Driven diffusive processes have been widely studied a$ion rates (injection ratea) in the free-flow(jamming re-
prototypes of nonequilibrium systeris—4]. They are mod- 9!/me. ) _ . .
eled as a lattice gas and are characterized by a constant ex- Comparing the ASEP with real traffic, however, it is ob-

ternal force(e.g., electrical field which sets up a steady vious that phenomena such as acceleration and slowing

current transporting information from the boundaries to thedoWn are notincluded in the model. Here, cars either do not

bulk of the system move at all or move one site per time step. It can therefore be

A well-known modification of the basic one-dimensional 32:’d t:)h%tetth?nyogo;/;ari\g:ir:: Teas,xd?sun?\lgggcgﬁdaxg clﬁr:anclggnberg
diffusive s_ystem IS the asymmetrlp exclusion ProCeSShiroduced a mod€l24] in which cars are able to drive with
(ASEP), which was first solved by Derridet al.[5] for open : : - "

boundary conditions. The ASEP is defined as follows: Con_d|fferent discrete integer velocitias 0=v=Umgc1.

. y con o ; . oy - Another interesting feature of the parallel update proce-
sider a one-dimensional lattice bfsites. Each sité (1<i  g,re js that it induces additional short-range correlations
<L) is either occupied by a particler(=1) or empty i compared to other updating procedures. An essential part of
=0). A particle on site has the probability of hopping one  this paper will therefore be devoted to the investigation of
site to the right if sitd + 1 is empty. At the left boundary of short-range correlation functionSec. \j which have al-
the system a particle is injected with probabilityif i=1 is  ready been studied in corresponding systems with periodic
empty. At the right boundary a particle oL is removed boundary conditions fow =1 [23-26 and in systems
with probability 8. The ASEP can be divided into four with open boundary conditions far,,,,=1 [15]. Moreover,
classes according to the order in which to perform hoppingit turned out that correlation functions are well suited to de-

injection, and removal(a) random-sequential updats—8]; scribe the free-flow—jamming transitig@6—30.

(b) ordered-sequential updaf®,10]; (c) sublattice-parallel The most _sig.nificant differencg. betvyeen systems .with
update[9,11-13; (d) parallel updatg14—-19. A detailed open and periodic boundary conditions is the car density
overview over all update types is given[ia0]. In a periodic system, the car density is a tuning parameter

An interesting feature of the ASEP is that phase transiand the probability to find a car at a certain sit&s p. In
tions occur as a function of the model parameters. UsuallpyStems with open boundary conditions, however, the situa-
there is a low-density/high-current phase and a high-densityJon is different as we have to deal with two different tuning
low-current phase reminiscent of the “free-flow” and the Parameters, namely the injection rateand the extinction
“lamming” states in vehicular traffif20—27. Being a cel- at€/, and the density is a derived parameter.
lular automaton, the ASEP and its generalizations are well- 1 h€ influence ofw and g on the car density implies that

suited to serve as simple models for traffic problems sincgluantities such as global density, current, and the density

- : ; - yrofile, which were studied for the ASEPRy{,=1) in
Sg;gfgc; %ﬁﬁ%’gﬁa‘l’tigs numerical techniques have been d 25,31-34, show a different behavior from periodic sys-

As is common for traffic simulations, we will use parallel tems. For the casemg,c>1 and open boundary conditions,
date in the following b thi " th ¢ P ffecti however, only a few results exist. Therefore, the casgs
update in tne following because this 1S the most eeciVe_ 1 g, =1 in systems with open boundary conditions

among the four update types and shows the best agreemq_}om be compared with each other in this paper, too.
with real traffic data[23]. In Fig. X&) we reproduced the —he paper is organized as follows. In the next section the
main results for the ASEP with parallel update: Based onyogel is described. The current and the global density of the

investigations on global density, current, density profilessystem are considered in Sec. IIl, in particular for the cases
and correlation functions, it turns out that there are two reg=1 4=1, and3=1-a. In Sec. IV we analyze the cor-

gimes, free flow and jamming, which are separated by theesponding density profiles and in Sec. V the short-range
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that the velocity of the injected car as-0 isv =0, then the
injected car is deleted. At=L+1, a “block” occurs with
probability 1- 3 and causes a slowing down of the cars at
the end of the system. Otherwise, with probabiftythe cars
simply move out of the system.

IlI. CURRENT AND GLOBAL DENSITY

Jamming
The phase diagrams for systems with maximum velocities
Umax=2,3,5 are shown in Figs.()—1(d). Figure 1b) re-
sembles the case, =1 except for some deviations that are
due to the fact that in systems with,,,=2 we do not have
a particle-hole symmetry as far,,,,=1. The course of the
free-flow—jamming border for the casg,,,= 3, on the other
hand, is very differenfFig. 1(c)]. Here, thea= B line does
not separate the free flow and the jamming regime. Instead,
the jamming regime is larger than the free-flow regime, and
for high extinction rate® cars freely move foall «. For the
maximum velocityv,,,x=5 these features are even more
strongly developed, as is obvious from Figd)L
Let us have a closer look at thg=1 line. The curreng
in Fig. 2(@ increases with increasing; for v,,=5, we
haveq(a<0.58=1)=«a. For high injection rates, however,
the curves surprisingly decrea§é v ,,,=4). This phenom-
enon cannot be observed in systems with maximum veloci-
FIG. 1. (a) Phase diagram with density profiles fof,=1 in ties v ma= 2,3, and forv,,=4 it is extremely weak. The
dependence on the injection rateand the extinction ratgs (ac- maximum of the current is at~0.9 for v,,,=5 and ate
cording to[14-19). (b) Phase diagram in dependence on the injec- § 835 for higher maximum velocities.
tion ratea and the extinction rat@ (v,.=2). (c) Phase diagram
in dependence on the injection rate and the extinction rate
B (vma=3). (d) Phase diagram in dependence on the injection
rate o and the extinction rat@ (v .= 5). Our investigations are - A
focused on the casgg=1, a=1, andB=1— « marked by dashed pla,p=1)=

lines. . . .

as all cars freely move with maximum velocity,,y.
correlation functions. The results are summarized and dis- Considering the currerifig. 2b)] and the global density
cussed in Sec. VI. [Fig. 2(c)] for the injection ratea=1, we see that fov .
=2 these quantities behave similarly to the cagg=1.
rvma 3, astonishing effects are observed which do not
pend on the maximum velocity #f,,,,=5: Coming from
low extinction rateg3, the current fow ,,,=5 increases pro-
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The corresponding global densipyresults from the cur-
rent in Fig. Za) by the relation

q(a,f=1)

Umax

Il. MODEL

. oo : . Fo
Our investigations are based on a one-dimensional probz&e
bilistic cellular automaton model introduced by Nagel and

Schreckenberg24]. According to the Nagel-Schreckenberg portionally to 8 and abruptly becomes constant gt

(NS) model, the road is divided into cells of equal size and " :
the time is also discrete. Each site can be either empty or. 0.835. For the global density, on the other hand, the tran-

occupied by a car with velocity=0,1, . . . pax. All sites ~ SION S€ems to be continuous. _
are simultaneously updated according to four successive Investigations of systems for large system sizes, however,
steps:(i) Acceleration: increase by 1 if v<v gy (i) Slow- shpvy thqt the continuous change in the global dgnsﬁy is just
ing down: decrease to v=d if necessary ¢ is the number @ finite-size effect: Although the curves are qualitatively the
of empty cells in front of the cdy (iii) randomization: de- Same as those in Fig(@, the transition from free flow to
creasev by 1 with randomization probabilitp if p>0; (iv) ~ jamming becomes more and more abrupt with increasing
movement: move cav sites forward. It is obvious that the System size.. Furthermore, it turns out that the value @f
NS model is idential with the ASEP model with parallel is slightly smaller than fot. =1024. As a consequence, from
update for maximum velocity o,=1. In this paper, the numerical investigations of systems with largét is fair to
randomization probability ip=0, i.e., stefiii) (randomiza- assume that fot —o the current is described by
tion) is ignored. The investigations are mainly focused on _ 5 _ 4
Umax="5 but for comparison also maximum velocities,,y A(a=1,8<5.vmac=5) =58
=2,3,4,6,7... areconsideredsee Sec. Il q(a=1,8>2,0ma=5)=3

Open boundary conditions are defined in the following d th di lobal densitv is ai b
way. The system consists tfsitesi with 1<i<L (for the and the corresponding giobal density IS given by
numerical simulations|.=1024). At sitei=0, that means pla=1B8<%vm=5)=1—%pB
that out of the system a vehicle with probabildéyand with
velocity v =v 5, IS created. This car immediately moves ac-
cording to the NS rules. if=1 is occupied by another car so

jamming,

free flow,

jamming,

;(a=1,,8>%,vmax>5)=3 free flow.

U max
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FIG. 2. (8 Current forg=1 and the maximum velocitie$ma=2,3, . . . ,10.(b) Current fora=1 and the maximum velocities .,

=2,3,...,10.(c) Global density fora=1 and the maximum velocities,,= 2,3, . . . ,10.

For increasing system sizes, current and global density corslowing-down step and the movement step. This is just a
verge to these values which can be “calculated” analyti-convention and does not change anything in the physical
cally, as is demonstrated in the following. Unfortunately, M€aning. o _

there exists no extensive analytical theory of the NS mode] In order to get better "?S'ght Into th_e behavior Of. the cur-
for maximum velocitiew > 1. We must therefore restrict rent and the global density, we consider the special case

. . . =pB=1. The car velocity is represented by numbers in
ourselves to a kind of bookkeeping that is nevertheless wellp o ket ¢)=(0),(1),. . .,@ma), andk connected unoc-

suited for the understanding of what is going on in the sysgypied sites by the symbaf. The first number in brackets
tem. Furthermore, it should be emphasized that the represefepresents the car a0 where cars are injected. Then we
tations of the configurations are snapshots between thieave the following:
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FIG. 2. (Continued.

(VmaX-  for t=0, remains constant and consists of maximallyv 2(— 1)
empty sites due t0<v 1.
The situation is different for the case=uv nay:

2
(0)(2)- - (VmadX"""max  for t=v .

Now, a pair of consecutive cars is focused upon at the beAccordmg to the left boundary conditions, the car at $ite

ginning of the system at time=n with 2=n=p, . 1: =0 with velocity v =0 is deleted and a new car is created

( ) o 2). (0 X instead at the next time step:
v —n)xUmax "(p —n+ (v X*= " Mmax
"‘?X e e (2)X4(3) - (U a) X"~ Pmadvma D) for t=p 1.

or t=n.
The difference of the velocities of the cars A =v gt l:?rifAté)r:1 afg tt?ries Z?gesbsvt\év%ig"t he;ars growses
—vpack= 2 and the velocity of each car increases by 1 due to Umax PS, ya
the acceleration step of the NS model. Consequently, the e (U mad X (U ma) - - (U mad XS UmadZUmaxc 1)
space between the cars grows withvt=2t. After n—1
time steps, we have

(U max— 1)x?max Yy yxtvmax  for t=1,
(U max— 2)XPmax 2(p XU max(p ) XD 20max for t=2,

for t=2vma— 1.

e (Ve D)X 2y (b (20 1oy If one proceeds, it can be clearly seen that 'th.ere are three
scenarios 1=0,1,2 . ..): The carcreated at sit¢=0 and
for t=2n-1 t=n (a) is deleted according to the left boundary conditions
and finally we find if N=vmat3m. (b) has v, empty sites in front ifn

Umaxtn—1 L—2nv _ =Umaxt 1+3m. (c) has 20 n.,— 1) empty sites in front if
(Uma) X" (Umad * - (Vmax)X me for t=2n. N=vmat2+3m. In other words, a self-repeating pattern
From now on, the space between the front and the back caestablishes itself after a while according to

|
(2) X2 - (Umax)xz(vmax_l)(vmw)xvma%l)max)xz(vmax_1)(Umax)xvma><vmax)xz(vmax_1)' )
(1) xt '(Umax)xz(vmax_1)(0max)xvmaX(Umax)xz(vmax_1)(Umax)xvmax(vmax)xz(vmax_l)' i

(0) (2 X2 '(vmax)xz(vmaxil)(vmax)xvmax(vmax)xz(vmaxil)(vmax)xvmax(vmax)xz(vmaxil)' e

This is perhaps astonishing because we naively would expggtunoccupied sites between two neighboring carsdferl.
Actually, there are also spaces consisting af 24— 1) sites, which is a consequence of the hindrance that the injected cars
feel from the front car at the beginning of the system. In other wargs,—2 additional sites—so-called “buffers{the
motivation for this name will be explained lajeroccur, playing an important role for systems with maximum velocity
Uma= 3, as we will see below.
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Besides, our reflections clearly show that one has to wai=5)=3/4v ., are higher there than foa=p=1. As al-
for at leastt=uv o time steps until the self-repeating pattern together 4 .. Sites are concerned by the disturbance, the
is established. Within this time period the first car created agffect increases with increasing,,y.
t=0 has moved onto site=v?_,. Therefore, our consider- Considering the sité=0, in Appendix A it is obvious
ations are only valid for systems whose size is much largethat the effect of the disturbance is different for maximum
thanv2_,, otherwise boundary effects must be taken intovelocitiesv <5 as cars driving withy =4 cannot be
account. injected withv =5, cars driving withv ,o,=3 cannot be in-
From the self-repeating pattern it follows that the distancgected withv =4, and so on. We do not go into details but
between two neighboring cars driving with,,, is alter- just list the results: Placing a disturbance at the beginning of

natelyd; = v max andd,=2 (v max— 1), i.€., a system withv n,,,=2,3,4, one gets
di=2, =2 for vpma=2, (a) qdist(ﬁzlvvmax:‘l'):%a Eﬁist(ﬂ:]-avmaxzél):%a
d1=3, dp=4 for vma=3, daisd B=Loma=3)=3,  pas(B=Loma=3)=3,

d1=4, d;=6 for vmac=4, Qdist(lgzlvvmaxzz)zéa ;ﬁist(ﬂzlivmaxzz):é;

(b) qdist(ﬂzlyvmax:‘l):%a ;jisl(ﬁ:]-avmaxzél):%v
no effect of disturbance fou 4= 3,

d1:5, d2:8 fOI’ Umax:51
d,=6, d,=10 for vy ,=6,

That means that buffers occur only fopq=3. Uaisk B=10max=2) =%,  pais B=L0ma=2)= 1;
Umax= 2 IS a special case behaving similarlyutga,=1. It _
is therefore no surprise that the corresponding phase dia-  (€) no effect of disturbance fov a,=2,3,4.

gram, the global density, and the current resembles the case Superposition of possibilitie&), (b), and(c) leads to the
vmax= 1. If finite-size effects are left out of consideration, the result that the effect of the disturbance is weaker g,

current is obviously given by =4 than for corresponding systems witf,,=5. For maxi-
qla=B=1vm1)=3 mum velocities o= 2,3, the current and the global density
and the global density by decrease, which is why the maximum of the curves in Fig.
_ 2 2@ is ata=1 if vye=3.
pla=L=1pymnay> 1)=3U , As far as the position of the maximum of the current is
max

. o ) ] concerned, we can only give a hand-waving argument: It is
which coincides with numerical results. obvious from Appendix A that the disturbance affects the
We will now investigate the effect of the buffers for the development of two buffers. On the other hand, it can be
extinction rates=1. For that purpose, we consider a slightly g5sjly seen that fow=8=1 a buffer is created every three
smaller injection rate by working a “disturbance” in the ime stepsiand consequently, two buffers are created in six
a=p=1 pattern, i.e., at each time stepcept for on@ caris  time steps Therefore, the strongest effect is expected when
created at=0. As the self-repeating pattern consists of thregy,e system is disturbed with the rate{&)=%. If (1—a)
time steps, we have three possibilities to place the distuthecomes higher, the buffers being necessary for the increase
bance. In Appendix A the effect is illustrated with\o=5  in the current and the global density cannot develop. This

(in Appendixes A and B the notation=uvma is used. It may be the reason why the maximum for the curves in Fig.
turns out that the movement of the cars does not change at 8l{a) with v,,,,,>5 is found ata~ 3.

for possibility (c). For (a) and (b), however, the disturbance  For the injection rater=1 the buffers have an even more

influences the system for three time steps as three cars shQyamatic effect, which can be observed at the end of the
a deviating behavior. Having a closer look at the sites afsystem. In analogy t@=1, we start with the special case

fected by the disturbance, we see that the curtep{(8  4=p=1. By simple analytic considerations it turns out that a
=1vmac5)=3 and the global densitypg(B=1vmax  Self-repeating pattern

o 'Xz(vmax_1)(vmax)xvma)<vmax)xz(vmax_1)(vmax)xvma><vmax)xz(vmax_1)(Umax)’
(v max)xz(vmax_ l)(vmax)xvma)(v max)xz(vmax_ l)(vmax)xvmw(v max)xvmax_lv

te (Umax)xvma%Umax)xz(vmaxil)(Umax)xvmw(vmax)xz(vmaxil)(vmax)xvmaxl

establishes itself at the end of the system, tos (2. Itis  disturbance(i.e., the consideration of an extinction rate that
important to mention that—due 8=1—no blockage occurs is slightly smaller than3=1) means here to place a single
at all at the right boundary and that the buffers reach thélockage at the end of the system. According to the self-
right boundary with the rate, = 3. The introduction of a  repeating pattern consisting of three time steps, we have to-
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consider three possibilities. From Appendix B it turns out the (a)
cars feel at the beginning of the system from the frony car
play an important role at the end of the system, too. Here,
they have the effect of a “buffer” against the influence of
the right boundary. It can be seen from Appendix B that two
buffers are necessary to neutralize the blockage effect at thos
end of the system. Therefore, as long as-(d) < 3 apyrer 04

=% a ]ammlng wave cannot develop. OZ

For B.= 2, however, there is a jump in the global density o.1
(remember that our analytical considerations are based oi °
systems with sizé& —oo; for L=1024 the change from free
flow to traffic is less abrupt due to finite-size effectés

mentioned above, we have;(a=1,,8>/36,_uma)(>5)
=2/ max In the free-flow regime andp(a=1.
>Bes Umax =5)=1-0.88 in the jamming regime. AtﬁC

=2, p immediately increases from 2/3 (free flow) to 3

(jamming. That means that there is a jump 0Ob {x
—2)/3vma at the critical extinction rate, which corresponds

to the buffer density in the free-flow regime. In other words,

at B.=2 the buffers cannot neutralize the blockage at the P
right boundary any longer. The buffer effect breaks down,
jamming waves propagate from the end of the system to thes
left, and the buffersy,,.x—2 sites on 3 . Sites eachare 03
completely occupied by cars. Consequently, both current ang
global density show similar behavior as the correspondingds
quantities forv ma,=1 if B<2.

Another interesting feature observed in Figd)2and Zc)
is that current and global density do not depend on the right
(left) boundary conditions, i.e., not gh(not ona andv 4y,
if the system is in the free-flojamming regime. This is
not only valid fora=1, but also for general injection and
extinction rates, as can be seen in Fi¢gg)Jor the current
and for Fig. 3b) for the global density.

In order to compare our results with those for correspond-
ing systems with periodic boundary conditions we investi-
gate the cas@=1—a. For B=1—q, there are rather similar
conditions at the left and at the right boundary and therefore

q

"'
' "

.°.°.
oxivw

FIG. 3. (a) Current in dependence on the injection ratand the
extinction rate8 (vmax="5). (b) Global density in dependence on
“the injection ratex and the extinction rat® (vma=5).

systems with open and with periodic boundary conditions ;(,le—a)z ¢ for a<ag,B>pBc,
can be compared at best with each other. Umax
The fundamental diagram for systems with periodic p(B=1—a)=1-0.88 for a>a,,B<p.

boundary condition$PBC) is completely determined by the
maximum velocityv o« (see[34] and references thergin  with a jump ata.=3~0.44 (3.=3~0.56).

The current of the system is given oy 2Y(p<pc) = v max The results forB=1—« induce the identity

for freely moving and byg"29(p>p.)=1—p for jammed

cars. The critical density is given by.= 1/v yayt+ 1. d(B=1l-a)=q(B=1) for a<ac,B>p,
In the case of open boundary conditions, on the other

hand, it turns out from numerical results fof=5 that the Q(B=1l-a)=q(a=1) for a>ac,B<p..

current in the free-flow(jamming regime only depends on

L o ; This indicates that the movement of the vehicles in the high-
the injection(extinction rate according to

density or jamming regime is dominated by the right bound-

g(B=l—a)=a for a<a.,B=p, ary conditions, and in the low-density or free-flow regime by
the left boundary conditions. To get better insight into this
A(B=1-a)=0.88 for a=a,B<p., question, we will have a closer look at the density profiles

and the short-range correlation functions which are analyzed
and consequently the transition takes place @t  due to the following three special cagasge also Fig. @)].
=0.44 (B.=0.56). The global density foB=1—a shows (i) B=1: shows the influence of the left boundafi) a=1:
finite-size effects as in the case=1. For largeL, however,  shows the influence of the right boundafiji;) 8=1—a: sys-
the transition from free flow to jamming becomes sharp.tems with open and periodic boundary conditions can be
Then the global density is described by compared at best with each other.
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The investigations of this section clearly show that thetions cannot be found at gl23]. Forv,,.,=5, however, the
casev =5 includes all features which are characteristicdensity profiles show a certain pattern recurring with the pe-
for higher maximum velocities, too. For this reason we con—iod Ai=5. In order to understand this phenomenon we con-
fine ourselves to systems with,,,=5 (andL=1024) in the  sider the density profiles for very low injection rates first.

following. For «=0.05[see Figs. &) and 4b)] the probability of
IV. DENSITY PROFILES generating a car at=0 in two successive time steps is very
A B=1 small and, therefore, the cars at the beginning of the system

. . . _ . do not interact with each other. That means that a car which
In this section we investigate the influence of the leftis ~reated oni=0 with velocity 5 (according to the left

boundary on the density profiles. The best way to do this i*boundary conditionsmoves td =5 at the next time step and
to setB=1, because in that case the right boundary has nggn pe found on the sité=5n after n time steps 1

influence on the system. =1,2,3...). Thedensity on these sites js~a. As it is

From Figs. 43 and 4b) it can be seen that the density obvious from Figs. @) and 4b), a car can also be found on
profiles are characterized by a periodic structure. This is &=5n+4 for smalla, too, but the probability for that is very
significant difference from the casg,,=1, where oscilla- small.
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FIG. 5. (a) Density profiles fore=1. (b) Density profiles fora=1 around the critical extinction ratg;. (c) Detail from (b) at the
beginning of the systert=1). (d) Detail from (b) at the end of the systeffa=1).

For increasing injection rates, however, the probability to a shift of the position of the cars within the system. This
of generating cars in two successive time steps increases astift is reflected in the periodic pattern of Figsasand
with it the hindrance that a car at the beginning of the systend(b). Whereas it is rather probable to find a car ien5n
feels from the front car. This can be understood as follows+5 and oni=5n+4, the probability of finding a car
Let us create a cah at time stept and a caB at time step  on i=5n+2 is much smaller and for=5n+3 it nearly
t+1. Considering the system &t 1, we see that caA is  vanishes.
oni=>5 having the velocity 5 whereas cBroni=0 has the The most important result, however, is the fact that the
velocity 4 because there are only four empty sites to casites i=6+5n are never occupied according to the left
A. At the time stept+n, carAis oni=5n and carB is  boundary conditions so that the density on these sites has the
on i=5(n—1)—1. To sum it up, it can be said that valuep(i=6+5n)=0 for all «. Before turning back to this
the hindrance due to the left boundary conditions leadgoint, we have to look at the case=pB=1, which is of
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FIG. 5. (Continued.
special interest in the following section, too. Instead, we choose=1, because only fow=1 are the cars
For «=pB=1, the corresponding density profile has thedeterministically created. This allows us to distinguish be-
following form: tween the influence of the right and of the left boundary.
p(i)=3% if i=5n+4 or i=5n+5, In Fig. 5@a), we can see that the situation fer1 is very

L ) different from that described in the preceding section. For
~ p(i)=0otherwise, _high extinction rates we still recognize the periodic structure
as can be easily deduced from the left boundary condltlonsa|ready known from the casg=1. For extinction rates3
B a= between 0.75 and 0.85, something interesting happens: the
La=1 . . ! .
oscillations vanish and the envelope of the density profile
We investigate the influence of the right boundary now.rises. For low extinction rates, the density profiles are just a
Unfortunately, the influence of the left boundary cannot beconstant whose value increases with decreaging
completely left out of consideration by setting, for example, In order to understand this change, we consider density
a=0, because in that case no cars would be generated at glirofiles for 0.83<8<0.84 in Figs. %b)-5(d). Oni=4+5n
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FIG. 6. (a) Density profiles from(b) taking only the sites=6+5n into account(a=1). (b) Logarithmic plot of the density profiles
for B> . taking only the sites=6+5n into account(a=1). (c) Logarithmic plot of pax— p(i=6+5n) for a=1. (d) Gradient of the
density profiles in(b) and (c) depending on the extinction raj@ (a=1). () Maximum value of the density profiles(i=6+5n) oni
=1021 (@=1).

1e-06
0

andi=5+5n we find p(i)=3 resulting from the influence jam develops at the right boundary which expands to the left.
of the left boundary(see Sec. IVA The other sitegwith For B~0.837, the influence of the right boundary finally
p=0 for B=1), however, increasingly reflect the influence of reaches the beginning of the systfffig. 5c)]. For 5=0.84,

the right boundary with decreasing extinction rates. Cominghe sites =4+ 5n andi =5+ 5n indicate the repulsion at the
from high B, the density oi=6+5n, i=7+5n, andi=8 right boundary, too, as the density profile becompess
+5n seems to “come away” from thp(i)=0 line starting there. In parallel to this, the oscillations resulting from the
at the right boundary. This phenomenon can be explaineteft boundary conditions vanish, a process which starts from
due to the repulsion the car feels at the right boundary witlthe end of the system as well.

decreasing probability3 of being extinct. Consequently, a  Our observations have been quite qualitative so far. In the
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FIG. 6. (Continued).

following the transition described above will be analyzed

iN=p.(B)eSPI~1) [p (B) is the maximum value of the

detail and for that purpose we will have a closer look at thegensity on the sites=6+5n]. In Fig. 6d) the exponent

sitesi=6+5n. As we know from the preceding section, ¢(g) is drawn against the extinction ragand it is obvious
these sites are never occupied according to the left boundagat c(8) = k(58— 8,) with B.=0.8362 anck~2. Whereas

conditions. In other words, the occupation of the site$

B. can be clearly identified as the critical extinction rate

+5n is exclusivelyan effect of the right boundary. There- where the transition from freely moving to jammed traffic

fore, these sites play an important role as they show
repercussion of the right boundary on the system.

The density on these sites is shown in Fig&)66(c).
The density profiles correspond to the sgéas in Fig. §b),
but here all sites except for=6+5n are left out of consid-
eration. Let us first consider the density profiles B S
[Fig. 6b)], which are exponential functions (i=6+5n)

théakes place, the factdris still an open question.
If we pass over to the density profiles f8< 8, it can
be easily seen in Figs(® and &d) that the density profiles
have the formp(i =6+5n)= pm.{B)[1—e“P'].
The behavior of the density profiles described in this sec
tion has the following physical explanation. As is well
known, the right boundary has no effect on the density pro-
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FIG. 6. (Continued).

files for B=1. With decreasing, however, there is a grow- (ki~—24.46;k,~—0.8; 8,=0.8362). Thus, the transition
ing probability of a blockage at the end of the system, i.e.from freely moving to jammed traffic is reflected at the right
cars are increasingly hindered from moving out of the sysboundary, too.
tem. Consequently, a jam develops showing the growing in- C.p=1l-a
fluence of the right boundary with decreasify For B '
> B, the influence of the right boundary diminishes expo- We have already mentioned that f@=1—a we have
nentially [Fig. 6(b)]. Figure &a) further shows that the left rather similar conditions at the left and, at the right boundary
boundary conditions are still valid for the whole system,and, therefore, systems with open and with periodic bound-
which can be seen at the oscillations of the density profile@ry conditions can be compared at best with each other in
and in the constant valye (i) =3 on the sites=4+5nand  that case.
i =5+5n characteristic for the case=8=1. For decreasing We must keep in mind, however, that there are significant
B, the jam and with it the influence of the right boundary differences for=1-«, too, especially if the randomization
expand to the left. probability isp=0: In systems with periodic boundary con-
At 8= ., the repercussion of the right boundary reacheslitions, the movement of the cars is fully deterministic and
the left boundary, and the decay of the jam is proportional tahe car density in the system remains constant. Each site in
i. Simultaneously, the influence of the left boundary is still-the system has the same probability of being occupied and,
present in the whole system, too, which manifests itself intherefore, the density profiles of systems with periodic
the oscillations in the density profile going from the left to poundary conditions are constants with the vauthe latter
the right boundaryFig. 6@)]. So it can be said that for the gtatement is also valid for randomization probabilities
extinction rate=p., the influences of the left and right >0). For corresponding systems with open boundary
boundary coexist in the whole system. . _, conditions—due to the injection rate and the extinction
However, beginning from the right, the oscillations Van'Shrate B—we always have a nondeterministic element at the

when the extinction rate is further decrea$Eit). 6(a)]. This . o
indicates that the influence of the left boundary is pushecl];)oundanes of the system, as well as for the randomization

back for B<B,. The form p(i=6+5n)=prm(B)[1 probability p=0 (which only refers to the movement in the
) c: m

—e®A)1] shows the decrease of unoccupied sites and ma9u”()' . . ,
suggest a symmetry around the transition point. Qe_nerally sp_eakmg, the density profiles &Fl._a show

For very smallB, the left boundary does not have any @ Similar behavior to those for the cage:1 (see Fig. J: For
relevance at all for the movement of the cars in the bulk. Very low extinction rategand high injection ratgsthe den-

Finally, let us address the maximum valyg,.(S3) sity profiles are identical with the density profile of a corre-
—maq{p(i=6+5n)]. From Fig. 6a) it is obvious that Sponding system with periodic boundary conditions. For
pma{B) can be identified with the density on site high 8 (and low @) the density profiles show the periodic
=1021, pad B) =p (B, i=1021). From Fig. 6) it turns  Structure already known from the previous sections as a typi-

out then that cal feature of the free-flow regime. A8.=0.56 (and a,
Pl B) = Pmank B)EXEFD  for g>p =0.44), the transition from free flow to jamming takes place.
ma maxte ¢ For B>p., the curves have the fornp (i=6+5n)
pmad B)=1+kB  for B<p = pmad B) €SP -L) | for B<B. p(i=6+5n=pmax(B)[1
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—e®A and for =B, we have a straight line. The only the right boundary on the system for increasimgOn the
difference from thea=1 case is the value of the critical other hand, comparing the density profiles 11—« and
extinction rate and ok: For B=1—a we haveB.=0.56 a=1 with each other, we see that they are identical for very
andk=3.75. low B. For increasings, the density profile “drops” at the

In Sec. Ill we have already mentioned that in the high-beginning of the system. Accordingly, this behavior shows
density regime the global densitgurrent for B=1—« is  the growing influence of the left boundary on the system. In
identical with the global densitgcurrent for =1 and in the  the transition regime, however, the density profiles for
low-density regime with the global densiticurreny for ~ B=1—« are very different from those for the cases 1 and
B=1. From Figs. 8) and 8b) it is obvious that similar p=1.
effects can also be observed for the density profiles, too. V. CORRELATION FUNCTIONS
Having a closer look at them, we see that the profiles for
B=1—a andB=1 are identical if the injection rate is low. _ S L 2
For increasingy, the density profiles foB=1—a start to lift CA,O=(n(i"t"), (i’ +i,t'+1))i v —p
at the end of the system, indicating the growing influence ofor short ranges with

In this section we consider correlation functions
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FIG. 8. (a) Correlation functions for systems with periodic boundary conditi@nsCorrelation functions in the middle of the system for

B=1—a. (c) Correlation functions at the beginning of the system fier 1— «. (d) Correlation functions at the end of the system for
=1l-a.

n(i’,t")=1 ifsite i’ is occupied at timet’, It would be interesting to see if these features can also be
2(i’ ')=0 otherwise. found for systems with open boundary conditions. But con-

This kind of correlation function has already been investi-S'9€1ing the deterministic case in this paper, we should in-
gated for systems with periodic boundary conditions and th¥/€stigate the correlation functions for systems with periodic
randomization probabilitp= 0.5 in[28]. It turned out that in  boundaries ang=0 first. From Fig. &), it can be seen that
the free-flow regime there is a propagating peak=a mqt th(_a propagating peak is sharp and that there are further peaks
with a shoulder ati=v,t—1 and with anticorrelations ati=vmat*+6n(n=1,2,...) asthenovement of the cars in
around it. The density where these anticorrelations are maxthe ring is deterministic. Due to the fact that the initial con-
mally developed is defined as the density where the transfiguration is random, however, these peaks become smaller
tion from free flow to jamming takes place. For higher den-and smaller with increasing. Between the peaks, anticorre-
sities, a jamming peak occurs iat — 1 [28]. lations are observed which are best developed around the
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peak ati=v,,t. Generally speaking, it can be said that in At this density where the transition from free flow to jam-
the free-flow regime the correlation functior(i,t) are  ming takes place, the anticorrelations reach their minimum.
symmetric around the site=v . For higher densities, a jamming peak develops=at-1
Coming from low densities, the anticorrelations become(due to the hindrance that the back car feels in the jaith
deeper and deeper with increasipg At p=p.=1/(vmax  anticorrelations ai=+1. At all other sites, peaks and anti-
+1), the car distribution is well-defined: all vehicles drive correlations vanish. If the density further increases, fewer
with the maximum velocityvna=5, and between two and fewer cars movevith v >0) and, therefore, the anticor-
neighboring cars there arg,,=5 empty sites each. Corre- rg|ations ai= +1 disappear. Corresponding to the symme-
spondingly, the correlation function fgs=p. is periodic v aroundi=u,,,t in the free-flow regime, the correlation

with functions forp>p. are symmetric arountd=—1.
C(i,t)y=p—p? if i=vmat=6N, ~ Letus turn back to systems vv_ith open bour_ldary condi-
tions, which is the real topic of this paper. In Fighg we
C(i,t)=—p? otherwise. consider correlation functions from the middle of the system
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because the influence of the boundaries is minimal there. Itisurrent is found atv<<1 and 2<B<1 for v n,=5. We call
obvious that for high densities the correlation functions inthese additional sites “buffers” because they also have a
systems with open boundary conditions are nearly identicabuffer effect at the end of the system: Due to the buffers, the
Merely the minor maxima at= =2 in Fig. 8a) shift onto  development of jamming waves is suppressed up to an injec-
i==3 in Fig. 8b). tion rate3=2 (for high a andv ,=5) and this buffer effect

If the density in the system is low, however, the situationis responsible for the characteristic course of the free-flow—
is completely different: For systems with open boundariesjamming border forv,,=5. The transition from the free
we have a random element at the boundaries where cars aigw to the congested phase is of first order and accompanied
randomly created and deleted at each time step. Thereforby the collapse of the buffers.
due to the permanent presence of randomization, even if the In this context, it should be emphasized that the occur-
movement in the bulk is deterministic, we can only observerence of buffers—and consequently the specific features of
the propagating at=v,¢ (and a very small one at thewvp,=3 model—is due to the parallel updating mecha-
=vmad = 6). Around the propagating peak there are anticornism and not an effect of the particular injection rule. Natu-
relations, too, but they are not so well-developed as the arf@lly, there are other possibilities of generalizing the ASEP
ticorrelations of the corresponding correlation function in thet® vmax> 1, for example one could keep the existence of the
case of periodic boundary conditions. However, a commor§ar ati=0 if i=1 is occupied by another car. Simulations
feature of systems with open and periodic boundary condiPased on this alternative rule show that the phase diagram
tions is the symmetry of the correlation functions around @nd thea,3 dependence of the current are qualitatively the
— vt in the free-flow regime. same as the corresponding quantities considered in this pa-

As we have already mentioned, the anticorrelation er. This has been confirmed by analytical investigations of

around the propagating peak play an important role in sysi'€ SPecial casema=5, a=p=1 (according to Sec. i

tems with periodic boundary conditions, and we will now where buffers occur, 0o,
: P c boundary ’ As global density and currerfrom now on we refer
discuss the question if similar features can be observed f

i o ) 0a{gain exclusively to the injection rule defined in Seq. Il
systems with open boundary conditions. In Figl)88(d) o no qualitative differences for,.,.=5, a detailed analy-

we consider short-range correlation functions at the begings of the influence of the boundary conditions on the system
ning, the middle, and the end of the system. Coming frompy means of density profiles and short-range correlation
high extinction rateg3 (with f=1—a), the e}nt|correlat|ons functions is confined to the maximum Velocity ;.= 5.
become deeper and deeper everywhere in the system. Bgyrthermore, our numerical investigations are based on sys-
what is interesting is the fact that the anticorrelations start t@ems with sizeL = 1024. It must be mentioned here that
vanish again at an extinction rate where the influence of thénite-size effects occur which do not play an important role,
right boundary reaches the corresponding siseg also Sec. however the discontinuous transition in the global density
V C). Strictly speaking, the anticorrelations start to vanish abbecomes continuous and the value for the critical extinction
about =0.42 (at the eng, =0.43 (in the middlg, and rate (8.=0.836 for «=1 andL=1024) is slightly higher
B=0.44 (at the beginning than in the casé —oo.

Therefore, to sum up it can be said that the injection rate If we consider a single site of the system, there are three
(extinction ratg¢ where the probability to find a car in the possibilities:A, the site is exclusively under the influence of
neighborhood of another car is minim@le., where the an- the left boundaryB, the site is exclusively under the influ-
ticorrelations start to vanigtcan be considered as the injec- €nce of the right boundary, the site is under the influence
tion rate o, (extinction rate.) where the transition from ©Of both the left and the right boundary. In the free-flow re-

free flow to jamming takes place. gime, the system consists of sites of the typemdC,; in the
jamming regime, the system consists of sites of the tgpe
VI. CONCLUSIONS AND DISCUSSION and C. The critical injection ratex. (the critical extinction

rate B.), where the transition from freely moving to jammed
Systems with open boundaries where cars move determinraffic takes place, is the only (8) whereall sites of the
istically with maximum velocityv ,>1 show interesting system belong to th€ type, i.e., where the influence of the
features mainly resulting from the competition of the left andleft and of the right boundary coexists in the whole system.
right boundary for the influence in the system and from theThe farther we go away from the transition point, the stron-

existence of so-called “buffers.” ger is the dominance of th& sites in the free-flow regime
The latter plays a fundamental role in the comparison ofand of theB sites in the jamming region.
systems withv ,,,,=3 andv ,,,=1. One of the most impor- In the free-flow(jamming regime the current does not

tant questions in this context is why the border between freelepend on the injection rate (extinction rateg), which
flow and jamming forv,,,=3 has such a different course confirms the dominance of the léfight) boundary influence
from the corresponding border for the casg,=1. By in the free-flow(jamming regime.

simple analytical considerations it turns out that—as a con- Comparing the density profiles for,,,=5 with those for
sequence of the hindrance that an injected car feels from the,o=1, we see that the most significant differences are
front car—space$> v . develop for high injection ratee  found in the free-flow regime: In the free-flow regime, the
[for the special case ofa=pB=1 there are alternately density profile for,,=5 shows periodic structure with the
2(Umax— 1) anduv, Sites between neighboring cars for all period Ai=v =5, which is due to the free movement of
vmaxc> 1]. That means in addition to the expected., sites, the cars. Another interesting result is the fact that the sites
further sites occur that are the reason why the maximum=6+5n (n=1,2,...) arenever occupied when they are
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peyoqd the s_phere of influence of thg right poundary. In thezed by a peak ai=v,t(i=—1) with anticorrelations
jamming regime, however, the density profiles fof.=5  around it. Furthermore, in systems with open or periodic
andvpya=1 are nearly the same. The investigation of thepoundary conditions, the anticorrelations around the free-

density profiles, especially the behavior on the sités flow peak are maximally developed when the transition from
+5n, enables the precise localization of the phase transitiorfree flow to jamming takes place.

The short-range correlation functiord(i,t) show that
there are parallels between systems with open and with pe-

riodic boundgry con(_jitioqs, which are the following: I.nl the ACKNOWLEDGMENTS
free-flow regime,C(i,t) is symmetric around the site
=vmad and in the jamming region arounid= —1, which This work was supported by the Land of North Rhine-

may suggest a symmetry. Free flgjgmming is character- Westphalia and by the OTKAT029985.
APPENDIX A: DISTURBANCE AT THE BEGINNING OF THE SYSTEM

@
(2) x3(3)x5---({))x2<5*1>({))x’3(a)x2<5*1)(8)'3(6)x2(5*1>(17)---
(1) X33+ (D)X DD (D)X V(D) (D)X (D) -+
(0) (2)x3(4) -+ (D)X~ V(D)X (0)x2 V(D) (5)x2* V(D) -+
(—) x2(3)x5---(z})x2<5*1)(6)x5({;)x2<5*1>(z§)5(a)x2<5*1>(6)---Hno car
(5) X3(4)x7 -+ ()2~ D)X (5)x2C"V(5)*(5)x¥ V() -+ injected!
(4) XH(A)x*+ - (0)x2 VD)X (D)X V() (D)X V(D) -+
(3) x3(4)x4---(8)x2(5*1>(8)x5({;)x2<5*1)(8)5({;)x2<5*1>(8)---
(2) x2(4)x4---(6)x2<5*1>({))x’3(a)x2<5*1)(8)’3(8)xz(5*1>(&)---
(1) XH3)x*+++ (0)x2 VD)X (D)2 D(0) (D)3 V(D) -+
(0) (2)x3(4) -+ (D)X~ V(D)X (0)x2 V(D) (5)x2 V(D) -+
(2) X2(3)X5...(,;)de—l)(l;)xa(a)X2<;—1>(;));(;))X2<a—1>(;})...
(1) XH3)x%+++ ()X VD)X (D)X V() (D)3 V(D) -+
(0) (2)x3(4)-+ (D)X D)X (0)x2¢ V(D) (5)x2* V(D) -+
(2) X3(3)x%+++ (D)X (D)X V(D)X (D)X (D)X (D)X*(D) -+
(1) xY(3)x3----- (;})Xa(l;)Xz(a—l)(a)xz;—a(a)xa(a)X;(;})Xa(a) ......
(0) (2)x3(4)----o---- ()27 (5)x2C~D(5)x> (6)x" (5)x" (5)x7(5) - -
;ffect of (;;snubanc;
(b

(1) @3-+ ()2 V (D)X () (D)X V(D) -
(0) (2X3(4) =+ ()1 D@ ([D)ED(B) (5)x2 0 H(B) -+

(2) X¥(B)XE--+ (5)x20 D ()x (D)X~ D(5)*(5)x20D(5) - -
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(©

(=) XY 3 (5)x2 (D)X (2)x2CD(5)°(5)x2C (D) -+ — no car

(4) X4 @)X (D)X D)X ()20 V(5) (5)x2 D) -+ injected!
(3) X3(A)x*++ (D)X VD)X (D)2 V() (D)X V(D) - -+

(2) X2(4)x*++ (D)X VD)X (D)2 V() (D)X V(D) - -+

(1) x1(3)x4---(8)x2<5*1>(8)x5({;)xz@*l)(z})5(6)x2(5*1)(z3)---

(0) (2)x3(4)-+ (D)X~ V()X (0)x2¢ V(D) (5)x2 V(D) -

(2) X2(3)X5...(,;)de—l)(l;)xa(a)X2<£—1>(;));(;))X2<a—1)(l;)...

(1) x1(3)x3---(6)x2<5*1>(8)xa(a)xz@*1)(6)’3({))x2<5*1)(8)---

(0) (2)x3(4) -+ (D)X2~D(D)x" (D)X V(D) (D)X~ V(D) -+

(2) X3(3)X%+++ (D)X (0)X2C V(D)X (D)X (D)X (D)X*(D) -+
(1) XH3)X3++ -+ (D)X (D)X D(0)X2 3D (D)X (D)X (D) -+
(0) (2)x3(4)+wveenee (6)x7(5)22C~ D(5)2> (5)x"(5)x" (5)x°(5) - -

effect of disturbance

(0) (2)x3(4) -+~ (5)X2C " DH)X(5)x20~D(5)(5)x20 V(D) - -

(2) X¥(3)XE--+ (5)x2C D ()xV (D)X~ D(5)*(5)x20D(5) - -

(1) XXB)X3- -+ (5)x2C D ()x(5)x2C V()" (5)x20D(5) - --

(=) (2)x3(4) - (5)x2 D)X (5)x2~D(5)°(5)x2@~V(5) -++ — no car

(2) X3+ (D)X V(D)X ()X V(D) (5)x (D) -+

(1) XXB)X3- -+ (5)x20 D ()x (D)X~ D(5)* (5)x20D(5) - --

(0) (2)X3(4) -+ (B D@ (D) D(E) ()32 V() -+

=no effect of disturbance
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APPENDIX B: DISTURBANCE AT THE END OF THE SYSTEM
(@
x0T (5 ) (p) x20TD (p)
e (B) XD () w (D) Wl
e (D) X2 (5) X
—x20=1) () x20=1) () —blockage!
x0T 3y X (5-2) X2 (1)
o (0) X2OY (5-2) X2 (5-1) x!
o (D) X (D) X202 (§—1) XPemmmmmeeeee-
co (D) X2 (5) x¥ (p) x*"! from here on
(D) XU (D) X2 () XV nothing reminds us
2D 5y )0 (5) x2@"D () of the disturbance
(b)
(D) x2(0=1) () NG ) N
() XY (D) Y (§) X
_“XZ(Avfl) (13) X‘v ({)) X2(Avfl) (13)
o (0) X2@D (§) x* (5—1) x*"! —blockage!
Cxv x0T D (G5 -1) xt (D)
N O R I O IR T —
co (D) X2 (5) x¥ (p) xU"! from here on
() X (D) x2@=D () x¥ nothing reminds us
~x20D (5) xv (D) x2@D (p) of the disturbance
(©
S () ¥ (D) XY (©) X
,.X2(Au—1) (l’}) XAU (l’;) X2(Au—1) (l’})
- (0) XY (B) X (D) Xt
- (D) X (D) X2V (§) x¥ < blockage!
~x20=D (5) xv (p) x2v (5) blockage
- (0) X2 (5) x¥ (p) x*"! has no
S (D) X () x2vTD (p) x¥ effect
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