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Stochastic boundary conditions in the deterministic Nagel-Schreckenberg traffic model
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We consider open systems where cars move according to the deterministic Nagel-Schreckenberg rules@K.
Nagel and M. Schreckenberg, J. Phys. I2, 2221 ~1992!# and with maximum velocityvmax.1, which is an
extension of the asymmetric exclusion process~ASEP!. It turns out that the behavior of the system is domi-
nated by two features:~a! the competition between the left and the right boundary,~b! the development of
so-called ‘‘buffers’’ due to the hindrance that an injected car feels from the front car at the beginning of the
system. As a consequence, there is a first-order phase transition between the free flow and the congested phase
accompanied by the collapse of the buffers, and the phase diagram essentially differs from that forvmax51
~ASEP!.
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I. INTRODUCTION

Driven diffusive processes have been widely studied
prototypes of nonequilibrium systems@1–4#. They are mod-
eled as a lattice gas and are characterized by a constan
ternal force~e.g., electrical field!, which sets up a stead
current transporting information from the boundaries to
bulk of the system.

A well-known modification of the basic one-dimension
diffusive system is the asymmetric exclusion proce
~ASEP!, which was first solved by Derridaet al. @5# for open
boundary conditions. The ASEP is defined as follows: C
sider a one-dimensional lattice ofL sites. Each sitei (1< i
<L) is either occupied by a particle (t i51) or empty (t i
50). A particle on sitei has the probabilityp of hopping one
site to the right if sitei 11 is empty. At the left boundary o
the system a particle is injected with probabilitya if i 51 is
empty. At the right boundary a particle oni 5L is removed
with probability b. The ASEP can be divided into fou
classes according to the order in which to perform hoppi
injection, and removal:~a! random-sequential update@5–8#;
~b! ordered-sequential update@9,10#; ~c! sublattice-parallel
update@9,11–13#; ~d! parallel update@14–19#. A detailed
overview over all update types is given in@20#.

An interesting feature of the ASEP is that phase tran
tions occur as a function of the model parameters. Usu
there is a low-density/high-current phase and a high-den
low-current phase reminiscent of the ‘‘free-flow’’ and th
‘‘jamming’’ states in vehicular traffic@20–22#. Being a cel-
lular automaton, the ASEP and its generalizations are w
suited to serve as simple models for traffic problems si
efficient analytical and numerical techniques have been
veloped for their study.

As is common for traffic simulations, we will use parall
update in the following because this is the most effect
among the four update types and shows the best agree
with real traffic data@23#. In Fig. 1~a! we reproduced the
main results for the ASEP with parallel update: Based
investigations on global density, current, density profil
and correlation functions, it turns out that there are two
gimes, free flow and jamming, which are separated by
1063-651X/2000/63~1!/016107~20!/$15.00 63 0161
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a5b line (a, injection rate;b, extinction rate!. All param-
eters have in common that they do not depend on the ext
tion rateb ~injection ratea) in the free-flow~jamming! re-
gime.

Comparing the ASEP with real traffic, however, it is o
vious that phenomena such as acceleration and slow
down are not included in the model. Here, cars either do
move at all or move one site per time step. It can therefore
said that they move with maximum velocityvmax51. In or-
der to get more realistic results, Nagel and Schreckenb
introduced a model@24# in which cars are able to drive with
different discrete integer velocitiesv, 0<v<vmax.1.

Another interesting feature of the parallel update pro
dure is that it induces additional short-range correlatio
compared to other updating procedures. An essential pa
this paper will therefore be devoted to the investigation
short-range correlation functions~Sec. V! which have al-
ready been studied in corresponding systems with perio
boundary conditions forvmax>1 @23–26# and in systems
with open boundary conditions forvmax51 @15#. Moreover,
it turned out that correlation functions are well suited to d
scribe the free-flow–jamming transition@26–30#.

The most significant difference between systems w
open and periodic boundary conditions is the car densityr.
In a periodic system, the car density is a tuning parame
and the probability to find a car at a certain sitei is r. In
systems with open boundary conditions, however, the si
tion is different as we have to deal with two different tunin
parameters, namely the injection ratea and the extinction
rateb, and the density is a derived parameter.

The influence ofa andb on the car density implies tha
quantities such as global density, current, and the den
profile, which were studied for the ASEP (vmax51) in
@25,31–34#, show a different behavior from periodic sys
tems. For the casevmax.1 and open boundary conditions
however, only a few results exist. Therefore, the casesvmax
51 andvmax.1 in systems with open boundary condition
will be compared with each other in this paper, too.

The paper is organized as follows. In the next section
model is described. The current and the global density of
system are considered in Sec. III, in particular for the ca
b51, a51, andb512a. In Sec. IV we analyze the cor
responding density profiles and in Sec. V the short-ran
©2000 The American Physical Society07-1
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correlation functions. The results are summarized and
cussed in Sec. VI.

II. MODEL

Our investigations are based on a one-dimensional pro
bilistic cellular automaton model introduced by Nagel a
Schreckenberg@24#. According to the Nagel-Schreckenbe
~NS! model, the road is divided intoL cells of equal size and
the time is also discrete. Each site can be either empt
occupied by a car with velocityv50,1, . . . ,vmax. All sites
are simultaneously updated according to four succes
steps:~i! Acceleration: increasev by 1 if v,vmax; ~ii ! slow-
ing down: decreasev to v5d if necessary (d is the number
of empty cells in front of the car!; ~iii ! randomization: de-
creasev by 1 with randomization probabilityp if p.0; ~iv!
movement: move carv sites forward. It is obvious that th
NS model is idential with the ASEP model with parall
update for maximum velocityvmax51. In this paper, the
randomization probability isp50, i.e., step~iii ! ~randomiza-
tion! is ignored. The investigations are mainly focused
vmax55 but for comparison also maximum velocitiesvmax
52,3,4,6,7, . . . areconsidered~see Sec. III!.

Open boundary conditions are defined in the followi
way. The system consists ofL sites i with 1< i<L ~for the
numerical simulations,L51024). At sitei 50, that means
that out of the system a vehicle with probabilitya and with
velocity v5vmax is created. This car immediately moves a
cording to the NS rules. Ifi 51 is occupied by another car s

FIG. 1. ~a! Phase diagram with density profiles forvmax51 in
dependence on the injection ratea and the extinction rateb ~ac-
cording to@14–19#!. ~b! Phase diagram in dependence on the inj
tion ratea and the extinction rateb (vmax52). ~c! Phase diagram
in dependence on the injection ratea and the extinction rate
b (vmax53). ~d! Phase diagram in dependence on the inject
ratea and the extinction rateb (vmax55). Our investigations are
focused on the casesb51, a51, andb512a marked by dashed
lines.
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that the velocity of the injected car oni 50 is v50, then the
injected car is deleted. Ati 5L11, a ‘‘block’’ occurs with
probability 12b and causes a slowing down of the cars
the end of the system. Otherwise, with probabilityb, the cars
simply move out of the system.

III. CURRENT AND GLOBAL DENSITY

The phase diagrams for systems with maximum veloci
vmax52,3,5 are shown in Figs. 1~b!–1~d!. Figure 1~b! re-
sembles the casevmax51 except for some deviations that a
due to the fact that in systems withvmax52 we do not have
a particle-hole symmetry as forvmax51. The course of the
free-flow–jamming border for the casevmax53, on the other
hand, is very different@Fig. 1~c!#. Here, thea5b line does
not separate the free flow and the jamming regime. Inste
the jamming regime is larger than the free-flow regime, a
for high extinction ratesb cars freely move forall a. For the
maximum velocityvmax55 these features are even mo
strongly developed, as is obvious from Fig. 1~d!.

Let us have a closer look at theb51 line. The currentq
in Fig. 2~a! increases with increasinga; for vmax>5, we
haveq(a<0.5,b51)5a. For high injection rates, however
the curves surprisingly decrease~if vmax>4). This phenom-
enon cannot be observed in systems with maximum vel
ties vmax52,3, and forvmax54 it is extremely weak. The
maximum of the current is ata'0.9 for vmax55 and ata
'0.835 for higher maximum velocities.

The corresponding global densityr̄ results from the cur-
rent in Fig. 2~a! by the relation

r̄~a,b51!5
q~a,b51!

vmax

as all cars freely move with maximum velocityvmax.
Considering the current@Fig. 2~b!# and the global density

@Fig. 2~c!# for the injection ratea51, we see that forvmax
52 these quantities behave similarly to the casevmax51.
For vmax>3, astonishing effects are observed which do n
depend on the maximum velocity ifvmax>5: Coming from
low extinction ratesb, the current forvmax>5 increases pro-
portionally to b and abruptly becomes constant atbc
50.835. For the global density, on the other hand, the tr
sition seems to be continuous.

Investigations of systems for large system sizes, howe
show that the continuous change in the global density is
a finite-size effect: Although the curves are qualitatively t
same as those in Fig. 2~c!, the transition from free flow to
jamming becomes more and more abrupt with increas
system sizeL. Furthermore, it turns out that the value ofbc
is slightly smaller than forL51024. As a consequence, from
numerical investigations of systems with largeL it is fair to
assume that forL→` the current is described by

q~a51,b, 5
6 ,vmax>5!5 4

5 b jamming,

q~a51,b. 5
6 ,vmax>5!5 2

3 free flow,

and the corresponding global density is given by

r̄~a51,b, 5
6 ,vmax>5!512 4

5 b jamming,

r̄~a51,b. 5
6 ,vmax>5!5

2

3vmax
free flow.

-

n
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FIG. 2. ~a! Current forb51 and the maximum velocitiesvmax52,3, . . . ,10.~b! Current fora51 and the maximum velocitiesvmax

52,3, . . . ,10.~c! Global density fora51 and the maximum velocitiesvmax52,3, . . . ,10.
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For increasing system sizes, current and global density c
verge to these values which can be ‘‘calculated’’ analy
cally, as is demonstrated in the following. Unfortunate
there exists no extensive analytical theory of the NS mo
for maximum velocitiesvmax.1. We must therefore restric
ourselves to a kind of bookkeeping that is nevertheless w
suited for the understanding of what is going on in the s
tem. Furthermore, it should be emphasized that the repre
tations of the configurations are snapshots between
01610
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slowing-down step and the movement step. This is jus
convention and does not change anything in the phys
meaning.

In order to get better insight into the behavior of the cu
rent and the global density, we consider the special casa
5b51. The car velocity is represented by numbers
brackets, (v)5(0),(1), . . . ,(vmax), and k connected unoc-
cupied sites by the symbolxk. The first number in brackets
represents the car ati 50 where cars are injected. Then w
have the following:
7-3
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FIG. 2. ~Continued!.
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~vmax!x
L for t50,

~vmax21!xvmax21~vmax!x
L2vmax for t51,

~vmax22!xvmax22~vmax!x
vmax~vmax!x

L22vmax for t52,

••• .

Now, a pair of consecutive cars is focused upon at the
ginning of the system at timet5n with 2>n>vmax21:

~vmax2n!xvmax2n~vmax2n12!•••~vmax!x
L2nvmax

for t5n.

The difference of the velocities of the cars isDv5v front
2vback52 and the velocity of each car increases by 1 due
the acceleration step of the NS model. Consequently,
space between the cars grows withDvt52t. After n21
time steps, we have

•••~vmax21!xvmax1n22~vmax!•••~vmax!x
L2(2n21)vmax

for t52n21

and finally we find

•••~vmax!x
vmax1n21~vmax!•••~vmax!x

L22nvmax for t52n.

From now on, the space between the front and the back
01610
e-

o
e

rs

remains constant and consists of maximally 2(vmax21)
empty sites due ton<vmax21.

The situation is different for the casen5vmax:

~0!~2!•••~vmax!x
L2vmax

2
for t5vmax.

According to the left boundary conditions, the car at sitei
50 with velocity v50 is deleted and a new car is creat
instead at the next time step:

~2!x2~3!•••~vmax!x
L2vmax(vmax11) for t5vmax11.

Here,Dv51 and the space between the cars grows asDvt
5t. After vmax22 time steps, we finally get

•••~vmax!x
vmax~vmax!•••~vmax!x

L2vmax(2vmax21)

for t52vmax21.

If one proceeds, it can be clearly seen that there are th
scenarios (m50,1,2, . . . ): The carcreated at sitei 50 and
t5n ~a! is deleted according to the left boundary conditio
if n5vmax13m. ~b! has vmax empty sites in front ifn
5vmax1113m. ~c! has 2(vmax21) empty sites in front if
n5vmax1213m. In other words, a self-repeating patte
establishes itself after a while according to
cars

ity
~2! x2
•••~vmax!x

2(vmax21)~vmax!x
vmax~vmax!x

2(vmax21)~vmax!x
vmax~vmax!x

2(vmax21)
•••,

~1! x1
•••~vmax!x

2(vmax21)~vmax!x
vmax~vmax!x

2(vmax21)~vmax!x
vmax~vmax!x

2(vmax21)
•••,

~0! ~2! x2
•••~vmax!x

2(vmax21)~vmax!x
vmax~vmax!x

2(vmax21)~vmax!x
vmax~vmax!x

2(vmax21)
••• .

This is perhaps astonishing because we naively would expectvmax unoccupied sites between two neighboring cars fora51.
Actually, there are also spaces consisting of 2(vmax21) sites, which is a consequence of the hindrance that the injected
feel from the front car at the beginning of the system. In other words,vmax22 additional sites—so-called ‘‘buffers’’~the
motivation for this name will be explained later!—occur, playing an important role for systems with maximum veloc
vmax>3, as we will see below.
7-4
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Besides, our reflections clearly show that one has to w
for at leastt5vmax time steps until the self-repeating patte
is established. Within this time period the first car created
t50 has moved onto sitei 5vmax

2 . Therefore, our consider
ations are only valid for systems whose size is much lar
than vmax

2 , otherwise boundary effects must be taken in
account.

From the self-repeating pattern it follows that the distan
between two neighboring cars driving withvmax is alter-
natelyd15vmax andd252(vmax21), i.e.,

d152, d252 for vmax52,

d153, d254 for vmax53,

d154, d256 for vmax54,

d155, d258 for vmax55,

d156, d2510 for vmax56,

••• .
That means that buffers occur only forvmax>3.

vmax52 is a special case behaving similarly tovmax51. It
is therefore no surprise that the corresponding phase
gram, the global density, and the current resembles the
vmax51. If finite-size effects are left out of consideration, t
current is obviously given by

q~a5b51,vmax.1!5 2
3

and the global density by

r̄~a5b51,vmax.1!5
2

3vmax
,

which coincides with numerical results.
We will now investigate the effect of the buffers for th

extinction rateb51. For that purpose, we consider a sligh
smaller injection rate by working a ‘‘disturbance’’ in th
a5b51 pattern, i.e., at each time stepexcept for onea car is
created ati 50. As the self-repeating pattern consists of thr
time steps, we have three possibilities to place the dis
bance. In Appendix A the effect is illustrated withvmax>5
~in Appendixes A and B the notationv̂5vmax is used!. It
turns out that the movement of the cars does not change a
for possibility ~c!. For ~a! and ~b!, however, the disturbanc
influences the system for three time steps as three cars s
a deviating behavior. Having a closer look at the sites
fected by the disturbance, we see that the currentqdist(b
51,vmax>5)5 3

4 and the global densityr̄dist(b51,vmax
th
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>5)53/4vmax are higher there than fora5b51. As al-
together 4vmax sites are concerned by the disturbance,
effect increases with increasingvmax.

Considering the sitei 50, in Appendix A it is obvious
that the effect of the disturbance is different for maximu
velocities vmax,5 as cars driving withvmax54 cannot be
injected withv55, cars driving withvmax53 cannot be in-
jected withv54, and so on. We do not go into details b
just list the results: Placing a disturbance at the beginning
a system withvmax52,3,4, one gets

~a! qdist~b51,vmax54!5 12
17 , r̄dist~b51,vmax54!5 3

17 ,

qdist~b51,vmax53!5 1
2 , r̄dist~b51,vmax53!5 1

6 ,

qdist~b51,vmax52!5 2
5 , r̄dist~b51,vmax52!5 1

5 ;

~b! qdist~b51,vmax54!5 3
4 , r̄dist~b51,vmax54!5 3

16 ,

no effect of disturbance forvmax53,

qdist~b51,vmax52!5 1
2 , r̄dist~b51,vmax52!5 1

4 ;

~c! no effect of disturbance forvmax52,3,4.

Superposition of possibilities~a!, ~b!, and~c! leads to the
result that the effect of the disturbance is weaker forvmax
54 than for corresponding systems withvmax>5. For maxi-
mum velocitiesvmax52,3, the current and the global densi
decrease, which is why the maximum of the curves in F
2~a! is at a51 if vmax<3.

As far as the position of the maximum of the current
concerned, we can only give a hand-waving argument: I
obvious from Appendix A that the disturbance affects t
development of two buffers. On the other hand, it can
easily seen that fora5b51 a buffer is created every thre
time steps~and consequently, two buffers are created in
time steps!. Therefore, the strongest effect is expected wh
the system is disturbed with the rate (12a)5 1

6 . If (12a)
becomes higher, the buffers being necessary for the incr
in the current and the global density cannot develop. T
may be the reason why the maximum for the curves in F
2~a! with vmax.5 is found ata' 5

6 .
For the injection ratea51 the buffers have an even mor

dramatic effect, which can be observed at the end of
system. In analogy tob51, we start with the special cas
a5b51. By simple analytic considerations it turns out tha
self-repeating pattern
•••x2(vmax21)~vmax!x
vmax~vmax!x

2(vmax21)~vmax!x
vmax~vmax!x

2(vmax21)~vmax!,

•••~vmax!x
2(vmax21)~vmax!x

vmax~vmax!x
2(vmax21)~vmax!x

vmax~vmax!x
vmax21,

•••~vmax!x
vmax~vmax!x

2(vmax21)~vmax!x
vmax~vmax!x

2(vmax21)~vmax!x
vmax,
at
le
elf-

to-
establishes itself at the end of the system, too (L@vmax
2 ). It is

important to mention that—due tob51—no blockage occurs
at all at the right boundary and that the buffers reach
right boundary with the rateabuffer5

1
3 . The introduction of a
e

disturbance~i.e., the consideration of an extinction rate th
is slightly smaller thanb51! means here to place a sing
blockage at the end of the system. According to the s
repeating pattern consisting of three time steps, we have
7-5
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consider three possibilities. From Appendix B it turns out t
cars feel at the beginning of the system from the front c!
play an important role at the end of the system, too. He
they have the effect of a ‘‘buffer’’ against the influence
the right boundary. It can be seen from Appendix B that t
buffers are necessary to neutralize the blockage effect a
end of the system. Therefore, as long as (12b), 1

2 abuffer
5 1

6 , a jamming wave cannot develop.
For bc5 5

6 , however, there is a jump in the global dens
~remember that our analytical considerations are based
systems with sizeL→`; for L51024 the change from fre
flow to traffic is less abrupt due to finite-size effects!. As
mentioned above, we haver̄(a51,b.bc , vmax>5)
52/3vmax in the free-flow regime and r̄(a51,b
.bc , vmax>5)5120.8b in the jamming regime. Atbc

5 5
6 , r̄ immediately increases from 2/3vmax ~free flow! to 1

3

~jamming!. That means that there is a jump of (vmax
22)/3vmax at the critical extinction rate, which correspon
to the buffer density in the free-flow regime. In other word
at bc5 5

6 the buffers cannot neutralize the blockage at
right boundary any longer. The buffer effect breaks dow
jamming waves propagate from the end of the system to
left, and the buffers (vmax22 sites on 3vmax sites each! are
completely occupied by cars. Consequently, both current
global density show similar behavior as the correspond
quantities forvmax51 if b, 5

6 .
Another interesting feature observed in Figs. 2~b! and 2~c!

is that current and global density do not depend on the r
~left! boundary conditions, i.e., not onb ~not ona andvmax),
if the system is in the free-flow~jamming! regime. This is
not only valid for a51, but also for general injection an
extinction rates, as can be seen in Fig. 3~a! for the current
and for Fig. 3~b! for the global density.

In order to compare our results with those for correspo
ing systems with periodic boundary conditions we inves
gate the caseb512a. For b512a, there are rather simila
conditions at the left and at the right boundary and theref
systems with open and with periodic boundary conditio
can be compared at best with each other.

The fundamental diagram for systems with period
boundary conditions~PBC! is completely determined by th
maximum velocityvmax ~see @34# and references therein!.
The current of the system is given byqPBC(r,rc)5vmaxr
for freely moving and byqPBC(r.rc)512r for jammed
cars. The critical density is given byrc51/vmax11.

In the case of open boundary conditions, on the ot
hand, it turns out from numerical results forvmax>5 that the
current in the free-flow~jamming! regime only depends on
the injection~extinction! rate according to

q~b512a!5a for a<ac ,b>bc ,

q~b512a!50.8b for a>ac ,b<bc ,

and consequently the transition takes place atac
50.44 (bc50.56). The global density forb512a shows
finite-size effects as in the casea51. For largeL, however,
the transition from free flow to jamming becomes sha
Then the global density is described by
01610
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r̄~b512a!5
a

vmax
for a,ac ,b.bc ,

r̄~b512a!5120.8b for a.ac ,b,bc

with a jump atac5 4
9 '0.44 (bc5 5

9 '0.56).
The results forb512a induce the identity

q~b512a!5q~b51! for a,ac ,b.bc ,

q~b512a!5q~a51! for a.ac ,b,bc .

This indicates that the movement of the vehicles in the hi
density or jamming regime is dominated by the right boun
ary conditions, and in the low-density or free-flow regime
the left boundary conditions. To get better insight into th
question, we will have a closer look at the density profi
and the short-range correlation functions which are analy
due to the following three special cases@see also Fig. 1~d!#.
~i! b51: shows the influence of the left boundary;~ii ! a51:
shows the influence of the right boundary;~iii ! b512a: sys-
tems with open and periodic boundary conditions can
compared at best with each other.

FIG. 3. ~a! Current in dependence on the injection ratea and the
extinction rateb (vmax55). ~b! Global density in dependence o
the injection ratea and the extinction rateb (vmax55).
7-6
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FIG. 4. ~a! Density profiles
at the beginning of the system~b
51!. ~b! Density profiles at the
end of the system~b51!.
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The investigations of this section clearly show that t
casevmax55 includes all features which are characteris
for higher maximum velocities, too. For this reason we co
fine ourselves to systems withvmax55 ~andL51024) in the
following.

IV. DENSITY PROFILES

A. bÄ1

In this section we investigate the influence of the l
boundary on the density profiles. The best way to do thi
to setb51, because in that case the right boundary has
influence on the system.

From Figs. 4~a! and 4~b! it can be seen that the densi
profiles are characterized by a periodic structure. This
significant difference from the casevmax51, where oscilla-
01610
-

t
is
o

a

tions cannot be found at all@23#. For vmax55, however, the
density profiles show a certain pattern recurring with the
riod D i 55. In order to understand this phenomenon we c
sider the density profiles for very low injection rates first.

For a50.05 @see Figs. 4~a! and 4~b!# the probability of
generating a car ati 50 in two successive time steps is ve
small and, therefore, the cars at the beginning of the sys
do not interact with each other. That means that a car wh
is created oni 50 with velocity 5 ~according to the left
boundary conditions! moves toi 55 at the next time step an
can be found on the sitei 55n after n time steps (n
51,2,3, . . . ). Thedensity on these sites isr'a. As it is
obvious from Figs. 4~a! and 4~b!, a car can also be found o
i 55n14 for smalla, too, but the probability for that is very
small.
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FIG. 5. ~a! Density profiles fora51. ~b! Density profiles fora51 around the critical extinction ratebc . ~c! Detail from ~b! at the
beginning of the system~a51!. ~d! Detail from ~b! at the end of the system~a51!.
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For increasing injection ratesa, however, the probability
of generating cars in two successive time steps increases
with it the hindrance that a car at the beginning of the sys
feels from the front car. This can be understood as follo
Let us create a carA at time stept and a carB at time step
t11. Considering the system att11, we see that carA is
on i 55 having the velocity 5 whereas carB on i 50 has the
velocity 4 because there are only four empty sites to
A. At the time stept1n, car A is on i 55n and carB is
on i 55(n21)21. To sum it up, it can be said tha
the hindrance due to the left boundary conditions le
01610
nd
m
:

r

s

to a shift of the position of the cars within the system. Th
shift is reflected in the periodic pattern of Figs. 4~a! and
4~b!. Whereas it is rather probable to find a car oni 55n
15 and on i 55n14, the probability of finding a car
on i 55n12 is much smaller and fori 55n13 it nearly
vanishes.

The most important result, however, is the fact that
sites i 5615n are never occupied according to the lef
boundary conditions so that the density on these sites ha
valuer( i 5615n)50 for all a. Before turning back to this
point, we have to look at the casea5b51, which is of
7-8
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FIG. 5. ~Continued!.
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special interest in the following section, too.
For a5b51, the corresponding density profile has t

following form:
r~ i !5 1

3 if i 55n14 or i 55n15,

r~ i !50 otherwise,
as can be easily deduced from the left boundary conditio

B. aÄ1

We investigate the influence of the right boundary no
Unfortunately, the influence of the left boundary cannot
completely left out of consideration by setting, for examp
a50, because in that case no cars would be generated a
01610
s.

.
e
,
all.

Instead, we choosea51, because only fora51 are the cars
deterministically created. This allows us to distinguish b
tween the influence of the right and of the left boundary.

In Fig. 5~a!, we can see that the situation fora51 is very
different from that described in the preceding section. F
high extinction rates we still recognize the periodic structu
already known from the caseb51. For extinction ratesb
between 0.75 and 0.85, something interesting happens
oscillations vanish and the envelope of the density pro
rises. For low extinction rates, the density profiles are jus
constant whose value increases with decreasingb.

In order to understand this change, we consider den
profiles for 0.83<b<0.84 in Figs. 5~b!–5~d!. On i 5415n
7-9
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FIG. 6. ~a! Density profiles from~b! taking only the sitesi 5615n into account~a51!. ~b! Logarithmic plot of the density profiles
for b.bc taking only the sitesi 5615n into account~a51!. ~c! Logarithmic plot ofrmax2r( i 5615n) for a51. ~d! Gradient of the
density profiles in~b! and ~c! depending on the extinction rateb ~a51!. ~e! Maximum value of the density profilesr( i 5615n) on i
51021 (a51).
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and i 5515n we find r( i )5 1
3 resulting from the influence

of the left boundary~see Sec. IV A!. The other sites~with
r50 for b51!, however, increasingly reflect the influence
the right boundary with decreasing extinction rates. Com
from high b, the density oni 5615n, i 5715n, and i 58
15n seems to ‘‘come away’’ from ther( i )50 line starting
at the right boundary. This phenomenon can be explai
due to the repulsion the car feels at the right boundary w
decreasing probabilityb of being extinct. Consequently,
01610
g

d
h

jam develops at the right boundary which expands to the l
For b'0.837, the influence of the right boundary final
reaches the beginning of the system@Fig. 5~c!#. For b50.84,
the sitesi 5415n andi 5515n indicate the repulsion at the
right boundary, too, as the density profile becomesr. 1

3

there. In parallel to this, the oscillations resulting from t
left boundary conditions vanish, a process which starts fr
the end of the system as well.

Our observations have been quite qualitative so far. In
7-10
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FIG. 6. ~Continued).
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following the transition described above will be analyzed
detail and for that purpose we will have a closer look at
sites i 5615n. As we know from the preceding sectio
these sites are never occupied according to the left boun
conditions. In other words, the occupation of the sitesi 56
15n is exclusivelyan effect of the right boundary. There
fore, these sites play an important role as they show
repercussion of the right boundary on the system.

The density on these sites is shown in Figs. 6~a!–6~c!.
The density profiles correspond to the sameb as in Fig. 5~b!,
but here all sites except fori 5615n are left out of consid-
eration. Let us first consider the density profiles forb.bc
@Fig. 6~b!#, which are exponential functionsr ~i5615n!
01610
e

ry

e

5rmax(b)ec(b)( i 2L) @rmax(b) is the maximum value of the
density on the sitesi 5615n#. In Fig. 6~d! the exponent
c(b) is drawn against the extinction rateb and it is obvious
that c(b)5k(b2bc) with bc50.8362 andk'2. Whereas
bc can be clearly identified as the critical extinction ra
where the transition from freely moving to jammed traffi
takes place, the factork is still an open question.

If we pass over to the density profiles forb,bc , it can
be easily seen in Figs. 6~c! and 6~d! that the density profiles
have the formr( i 5615n)5rmax(b)@12ec(b) i #.

The behavior of the density profiles described in this s
tion has the following physical explanation. As is we
known, the right boundary has no effect on the density p
7-11
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FIG. 6. ~Continued).
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files for b51. With decreasingb, however, there is a grow
ing probability of a blockage at the end of the system, i
cars are increasingly hindered from moving out of the s
tem. Consequently, a jam develops showing the growing
fluence of the right boundary with decreasingb. For b
.bc , the influence of the right boundary diminishes exp
nentially @Fig. 6~b!#. Figure 6~a! further shows that the lef
boundary conditions are still valid for the whole syste
which can be seen at the oscillations of the density pro
and in the constant valuer ( i )5 1

3 on the sitesi 5415n and
i 5515n characteristic for the casea5b51. For decreasing
b, the jam and with it the influence of the right bounda
expand to the left.

At b5bc , the repercussion of the right boundary reach
the left boundary, and the decay of the jam is proportiona
i. Simultaneously, the influence of the left boundary is st
present in the whole system, too, which manifests itself
the oscillations in the density profile going from the left
the right boundary@Fig. 6~a!#. So it can be said that for th
extinction rateb5bc , the influences of the left and righ
boundary coexist in the whole system.

However, beginning from the right, the oscillations vani
when the extinction rate is further decreased@Fig. 6~a!#. This
indicates that the influence of the left boundary is push
back for b,bc . The form r( i 5615n)5rmax(b)@1
2ec(b) i # shows the decrease of unoccupied sites and m
suggest a symmetry around the transition point.

For very smallb, the left boundary does not have an
relevance at all for the movement of the cars in the bulk

Finally, let us address the maximum valuermax(b)
5max@r( i 5615n)#. From Fig. 6~a! it is obvious that
rmax(b) can be identified with the density on sitei
51021,rmax(b)5r (b, i 51021). From Fig. 6~e! it turns
out then that

rmax~b!5rmax~bc!e
k1(b2bc) for b.bc ,

rmax~b!511k2b for b,bc
01610
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,
e
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(k1'224.46; k2'20.8; bc50.8362). Thus, the transition
from freely moving to jammed traffic is reflected at the rig
boundary, too.

C. bÄ1Àa

We have already mentioned that forb512a we have
rather similar conditions at the left and, at the right bound
and, therefore, systems with open and with periodic bou
ary conditions can be compared at best with each othe
that case.

We must keep in mind, however, that there are signific
differences forb512a, too, especially if the randomizatio
probability isp50: In systems with periodic boundary con
ditions, the movement of the cars is fully deterministic a
the car densityr in the system remains constant. Each site
the system has the same probability of being occupied a
therefore, the density profiles of systems with period
boundary conditions are constants with the valuer ~the latter
statement is also valid for randomization probabilitiesp
.0). For corresponding systems with open bound
conditions—due to the injection ratea and the extinction
rate b—we always have a nondeterministic element at
boundaries of the system, as well as for the randomiza
probability p50 ~which only refers to the movement in th
bulk!.

Generally speaking, the density profiles forb512a show
a similar behavior to those for the casea51 ~see Fig. 7!: For
very low extinction rates~and high injection rates!, the den-
sity profiles are identical with the density profile of a corr
sponding system with periodic boundary conditions. F
high b ~and low a! the density profiles show the period
structure already known from the previous sections as a t
cal feature of the free-flow regime. Atbc50.56 ~and ac
50.44), the transition from free flow to jamming takes plac
For b.bc , the curves have the formr ( i 5615n)
5rmax(b)ec(b)( i 2L), for b,bc r~i5615n!5rmax(b)[1
7-12
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FIG. 7. ~a! Comparison of the
density profiles forb512a and
b51. ~b! Comparison of the den-
sity profiles forb512a anda51.
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for
2ec(b) i # and for b5bc we have a straight line. The onl
difference from thea51 case is the value of the critica
extinction rate and ofk: For b512a we havebc50.56
andk53.75.

In Sec. III we have already mentioned that in the hig
density regime the global density~current! for b512a is
identical with the global density~current! for a51 and in the
low-density regime with the global density~current! for
b51. From Figs. 8~a! and 8~b! it is obvious that similar
effects can also be observed for the density profiles,
Having a closer look at them, we see that the profiles
b512a andb51 are identical if the injection ratea is low.
For increasinga, the density profiles forb512a start to lift
at the end of the system, indicating the growing influence
01610
-

o.
r

f

the right boundary on the system for increasinga. On the
other hand, comparing the density profiles forb512a and
a51 with each other, we see that they are identical for v
low b. For increasingb, the density profile ‘‘drops’’ at the
beginning of the system. Accordingly, this behavior sho
the growing influence of the left boundary on the system.
the transition regime, however, the density profiles
b512a are very different from those for the casesa51 and
b51.

V. CORRELATION FUNCTIONS

In this section we consider correlation functions

C~ i ,t !5^h~ i 8,t8!,h~ i 81 i ,t81t !& i 8,t82r2

for short ranges with
7-13
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FIG. 8. ~a! Correlation functions for systems with periodic boundary conditions.~b! Correlation functions in the middle of the system f
b512a. ~c! Correlation functions at the beginning of the system forb512a. ~d! Correlation functions at the end of the system forb
512a.
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h~ i 8,t8!51 if site i 8 is occupied at timet8,

h~ i 8,t8!50 otherwise.
This kind of correlation function has already been inves
gated for systems with periodic boundary conditions and
randomization probabilityp50.5 in @28#. It turned out that in
the free-flow regime there is a propagating peak ati 5vmaxt
with a shoulder ati 5vmaxt21 and with anticorrelations
around it. The density where these anticorrelations are m
mally developed is defined as the density where the tra
tion from free flow to jamming takes place. For higher de
sities, a jamming peak occurs ati 521 @28#.
01610
-
e

i-
i-

-

It would be interesting to see if these features can also
found for systems with open boundary conditions. But co
sidering the deterministic case in this paper, we should
vestigate the correlation functions for systems with perio
boundaries andp50 first. From Fig. 8~a!, it can be seen tha
the propagating peak is sharp and that there are further p
at i 5vmaxt66n(n51,2, . . . ) as themovement of the cars in
the ring is deterministic. Due to the fact that the initial co
figuration is random, however, these peaks become sm
and smaller with increasingn. Between the peaks, anticorre
lations are observed which are best developed around
7-14
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FIG. 8. ~Continued).
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peak ati 5vmaxt. Generally speaking, it can be said that
the free-flow regime the correlation functionsC( i ,t) are
symmetric around the sitei 5vmaxt.

Coming from low densities, the anticorrelations beco
deeper and deeper with increasingr. At r5rc51/(vmax
11), the car distribution is well-defined: all vehicles driv
with the maximum velocityvmax55, and between two
neighboring cars there arevmax55 empty sites each. Corre
spondingly, the correlation function forr5rc is periodic
with

C~ i ,t !5r2r2 if i 5vmaxt66n,

C~ i ,t !52r2 otherwise.
01610
e

At this density where the transition from free flow to jam
ming takes place, the anticorrelations reach their minimu

For higher densities, a jamming peak develops ati 521
~due to the hindrance that the back car feels in the jam! with
anticorrelations ati 561. At all other sites, peaks and ant
correlations vanish. If the density further increases, few
and fewer cars move~with v.0) and, therefore, the anticor
relations ati 561 disappear. Corresponding to the symm
try aroundi 5vmaxt in the free-flow regime, the correlatio
functions forr.rc are symmetric aroundi 521.

Let us turn back to systems with open boundary con
tions, which is the real topic of this paper. In Fig. 8~b!, we
consider correlation functions from the middle of the syst
7-15
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because the influence of the boundaries is minimal there.
obvious that for high densities the correlation functions
systems with open boundary conditions are nearly identi
Merely the minor maxima ati 562 in Fig. 8~a! shift onto
i 563 in Fig. 8~b!.

If the density in the system is low, however, the situati
is completely different: For systems with open boundari
we have a random element at the boundaries where car
randomly created and deleted at each time step. There
due to the permanent presence of randomization, even i
movement in the bulk is deterministic, we can only obse
the propagating ati 5vmaxt ~and a very small one ati
5vmaxt66). Around the propagating peak there are antic
relations, too, but they are not so well-developed as the
ticorrelations of the corresponding correlation function in t
case of periodic boundary conditions. However, a comm
feature of systems with open and periodic boundary con
tions is the symmetry of the correlation functions arouni
5vmaxt in the free-flow regime.

As we have already mentioned, the anticorrelatio
around the propagating peak play an important role in s
tems with periodic boundary conditions, and we will no
discuss the question if similar features can be observed
systems with open boundary conditions. In Figs. 8~b!–8~d!
we consider short-range correlation functions at the be
ning, the middle, and the end of the system. Coming fr
high extinction ratesb ~with b512a!, the anticorrelations
become deeper and deeper everywhere in the system.
what is interesting is the fact that the anticorrelations star
vanish again at an extinction rate where the influence of
right boundary reaches the corresponding sites~see also Sec
V C!. Strictly speaking, the anticorrelations start to vanish
about b50.42 ~at the end!, b50.43 ~in the middle!, and
b50.44 ~at the beginning!.

Therefore, to sum up it can be said that the injection r
~extinction rate! where the probability to find a car in th
neighborhood of another car is minimal~i.e., where the an-
ticorrelations start to vanish! can be considered as the inje
tion rate ac ~extinction ratebc) where the transition from
free flow to jamming takes place.

VI. CONCLUSIONS AND DISCUSSION

Systems with open boundaries where cars move deter
istically with maximum velocityvmax.1 show interesting
features mainly resulting from the competition of the left a
right boundary for the influence in the system and from
existence of so-called ‘‘buffers.’’

The latter plays a fundamental role in the comparison
systems withvmax>3 andvmax51. One of the most impor-
tant questions in this context is why the border between
flow and jamming forvmax>3 has such a different cours
from the corresponding border for the casevmax51. By
simple analytical considerations it turns out that—as a c
sequence of the hindrance that an injected car feels from
front car—spaces.vmax develop for high injection ratesa
@for the special case ofa5b51 there are alternately
2(vmax21) andvmax sites between neighboring cars for a
vmax.1#. That means in addition to the expectedvmax sites,
further sites occur that are the reason why the maxim
01610
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current is found ata,1 and 5
6<b<1 for vmax>5. We call

these additional sites ‘‘buffers’’ because they also have
buffer effect at the end of the system: Due to the buffers,
development of jamming waves is suppressed up to an in
tion rateb55

6 ~for high a andvmax>5) and this buffer effect
is responsible for the characteristic course of the free-flo
jamming border forvmax>5. The transition from the free
flow to the congested phase is of first order and accompa
by the collapse of the buffers.

In this context, it should be emphasized that the occ
rence of buffers—and consequently the specific feature
the vmax>3 model—is due to the parallel updating mech
nism and not an effect of the particular injection rule. Na
rally, there are other possibilities of generalizing the AS
to vmax.1, for example one could keep the existence of
car at i 50 if i 51 is occupied by another car. Simulation
based on this alternative rule show that the phase diag
and thea,b dependence of the current are qualitatively t
same as the corresponding quantities considered in this
per. This has been confirmed by analytical investigations
the special casevmax55, a5b51 ~according to Sec. III!
where buffers occur, too.

As global density and current~from now on we refer
again exclusively to the injection rule defined in Sec.!
show no qualitative differences forvmax>5, a detailed analy-
sis of the influence of the boundary conditions on the sys
~by means of density profiles and short-range correlat
functions! is confined to the maximum velocityvmax>5.
Furthermore, our numerical investigations are based on
tems with sizeL51024. It must be mentioned here th
finite-size effects occur which do not play an important ro
however the discontinuous transition in the global dens
becomes continuous and the value for the critical extinct
rate (bc50.836 for a51 and L51024) is slightly higher
than in the caseL→`.

If we consider a single site of the system, there are th
possibilities:A, the site is exclusively under the influence
the left boundary;B, the site is exclusively under the influ
ence of the right boundary;C, the site is under the influenc
of both the left and the right boundary. In the free-flow r
gime, the system consists of sites of the typesA andC; in the
jamming regime, the system consists of sites of the typB
and C. The critical injection rateac ~the critical extinction
ratebc), where the transition from freely moving to jamme
traffic takes place, is the onlya ~b! whereall sites of the
system belong to theC type, i.e., where the influence of th
left and of the right boundary coexists in the whole syste
The farther we go away from the transition point, the stro
ger is the dominance of theA sites in the free-flow regime
and of theB sites in the jamming region.

In the free-flow ~jamming! regime the current does no
depend on the injection ratea ~extinction rateb!, which
confirms the dominance of the left~right! boundary influence
in the free-flow~jamming! regime.

Comparing the density profiles forvmax55 with those for
vmax51, we see that the most significant differences
found in the free-flow regime: In the free-flow regime, th
density profile forvmax55 shows periodic structure with th
period D i 5vmax55, which is due to the free movement o
the cars. Another interesting result is the fact that the s
i 5615n (n51,2, . . . ) arenever occupied when they ar
7-16
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beyond the sphere of influence of the right boundary. In
jamming regime, however, the density profiles forvmax55
and vmax51 are nearly the same. The investigation of t
density profiles, especially the behavior on the sites56
15n, enables the precise localization of the phase transit

The short-range correlation functionsC( i ,t) show that
there are parallels between systems with open and with
riodic boundary conditions, which are the following: In th
free-flow regime,C( i ,t) is symmetric around the sitei
5vmaxt and in the jamming region aroundi 521, which
may suggest a symmetry. Free flow~jamming! is character-
01610
e

n.

e-

ized by a peak ati 5vmaxt( i 521) with anticorrelations
around it. Furthermore, in systems with open or perio
boundary conditions, the anticorrelations around the fr
flow peak are maximally developed when the transition fro
free flow to jamming takes place.
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APPENDIX A: DISTURBANCE AT THE BEGINNING OF THE SYSTEM

~a! A A

~2! x3~3!x5
¯ ~ v̂ !x2~ v̂21!~ v̂ !xv̂~ v̂ !x2~ v̂21!~ v̂ ! v̂~ v̂ !x2~ v̂21!~ v̂ ! ¯

~1! x1~3!x3
¯ ~ v̂ !x2~ v̂21!~ v̂ !xv̂~ v̂ !x2~ v̂21!~ v̂ ! v̂~ v̂ !x2~ v̂21!~ v̂ ! ¯

~0! ~2!x3~4! ¯ ~ v̂ !x2~ v̂21!~ v̂ !xv̂~ v̂ !x2~ v̂21!~ v̂ ! v̂~ v̂ !x2~ v̂21!~ v̂ ! ¯

~2 ! x2~3!x5
¯ ~ v̂ !x2~ v̂21!~ v̂ !xv̂~ v̂ !x2~ v̂21!~ v̂ ! v̂~ v̂ !x2~ v̂21!~ v̂ ! ¯ ← no car

~5! x5~4!x7
¯ ~ v̂ !x2~ v̂21!~ v̂ !xv̂~ v̂ !x2~ v̂21!~ v̂ ! v̂~ v̂ !x2~ v̂21!~ v̂ ! ¯ injected!

~4! x4~4!x4
¯ ~ v̂ !x2~ v̂21!~ v̂ !xv̂~ v̂ !x2~ v̂21!~ v̂ ! v̂~ v̂ !x2~ v̂21!~ v̂ ! ¯

~3! x3~4!x4
¯ ~ v̂ !x2~ v̂21!~ v̂ !xv̂~ v̂ !x2~ v̂21!~ v̂ ! v̂~ v̂ !x2~ v̂21!~ v̂ ! ¯

~2! x2~4!x4
¯ ~ v̂ !x2~ v̂21!~ v̂ !xv̂~ v̂ !x2~ v̂21!~ v̂ ! v̂~ v̂ !x2~ v̂21!~ v̂ ! ¯

~1! x1~3!x4
¯ ~ v̂ !x2~ v̂21!~ v̂ !xv̂~ v̂ !x2~ v̂21!~ v̂ ! v̂~ v̂ !x2~ v̂21!~ v̂ ! ¯

~0! ~2!x3~4! ¯ ~ v̂ !x2~ v̂21!~ v̂ !xv̂~ v̂ !x2~ v̂21!~ v̂ ! v̂~ v̂ !x2~ v̂21!~ v̂ ! ¯

~2! x2~3!x5
¯ ~ v̂ !x2~ v̂21!~ v̂ !xv̂~ v̂ !x2~ v̂21!~ v̂ ! v̂~ v̂ !x2~ v̂21!~ v̂ ! ¯

~1! x1~3!x3
¯ ~ v̂ !x2~ v̂21!~ v̂ !xv̂~ v̂ !x2~ v̂21!~ v̂ ! v̂~ v̂ !x2~ v̂21!~ v̂ ! ¯

~0! ~2!x3~4! ¯ ~ v̂ !x2~ v̂21!~ v̂ !xv̂~ v̂ !x2~ v̂21!~ v̂ ! v̂~ v̂ !x2~ v̂21!~ v̂ ! ¯

A A

~2! x2~3!x5
¯ ~ v̂ !xv̂~ v̂ !x2~ v̂21!~ v̂ !x2v̂23~ v̂ !xv̂~ v̂ !xv̂~ v̂ !xv̂~ v̂ ! ¯¯¯

~1! x1~3!x3
¯¯ ~ v̂ !xv̂~ v̂ !x2~ v̂21!~ v̂ !x2v̂23~ v̂ !xv̂~ v̂ !xv̂~ v̂ !xv̂~ v̂ ! ¯¯

~b! A A

~1! x1~3!x3
¯ ~ v̂ !x2~ v̂21!~ v̂ !xv̂~ v̂ !x2~ v̂21!~ v̂ ! v̂~ v̂ !x2~ v̂21!~ v̂ ! ¯

~0! ~2!x3~4! ¯ ~ v̂ !x2~ v̂21!~ v̂ !xv̂~ v̂ !x2~ v̂21!~ v̂ ! v̂~ v̂ !x2~ v̂21!~ v̂ ! ¯

~2! x2~3!x5
¯ ~ v̂ !x2~ v̂21!~ v̂ !xv̂~ v̂ !x2~ v̂21!~ v̂ ! v̂~ v̂ !x2~ v̂21!~ v̂ ! ¯
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~2 ! x1~3!x3
¯ ~ v̂ !x2~ v̂21!~ v̂ !xv̂~ v̂ !x2~ v̂21!~ v̂ ! v̂~ v̂ !x2~ v̂21!~ v̂ ! ¯ ← no car

~4! x4~4!x4
¯ ~ v̂ !x2~ v̂21!~ v̂ !xv̂~ v̂ !x2~ v̂21!~ v̂ ! v̂~ v̂ !x2~ v̂21!~ v̂ ! ¯ injected!

~3! x3~4!x4
¯ ~ v̂ !x2~ v̂21!~ v̂ !xv̂~ v̂ !x2~ v̂21!~ v̂ ! v̂~ v̂ !x2~ v̂21!~ v̂ ! ¯

~2! x2~4!x4
¯ ~ v̂ !x2~ v̂21!~ v̂ !xv̂~ v̂ !x2~ v̂21!~ v̂ ! v̂~ v̂ !x2~ v̂21!~ v̂ ! ¯

~1! x1~3!x4
¯ ~ v̂ !x2~ v̂21!~ v̂ !xv̂~ v̂ !x2~ v̂21!~ v̂ ! v̂~ v̂ !x2~ v̂21!~ v̂ ! ¯

~0! ~2!x3~4! ¯ ~ v̂ !x2~ v̂21!~ v̂ !xv̂~ v̂ !x2~ v̂21!~ v̂ ! v̂~ v̂ !x2~ v̂21!~ v̂ ! ¯

~2! x2~3!x5
¯ ~ v̂ !x2~ v̂21!~ v̂ !xv̂~ v̂ !x2~ v̂21!~ v̂ ! v̂~ v̂ !x2~ v̂21!~ v̂ ! ¯

~1! x1~3!x3
¯ ~ v̂ !x2~ v̂21!~ v̂ !xv̂~ v̂ !x2~ v̂21!~ v̂ ! v̂~ v̂ !x2~ v̂21!~ v̂ ! ¯

~0! ~2!x3~4! ¯ ~ v̂ !x2~ v̂21!~ v̂ !xv̂~ v̂ !x2~ v̂21!~ v̂ ! v̂~ v̂ !x2~ v̂21!~ v̂ ! ¯

A A

~2! x2~3!x5
¯ ~ v̂ !xv̂~ v̂ !x2~ v̂21!~ v̂ !x2v̂23~ v̂ !xv̂~ v̂ !xv̂~ v̂ !xv̂~ v̂ ! ¯¯¯

~1! x1~3!x3
¯¯ ~ v̂ !xv̂~ v̂ !x2~ v̂21!~ v̂ !x2v̂23~ v̂ !xv̂~ v̂ !xv̂~ v̂ !xv̂~ v̂ ! ¯¯

~c! A A

~0! ~2!x3~4! ¯ ~ v̂ !x2~ v̂21!~ v̂ !xv̂~ v̂ !x2~ v̂21!~ v̂ ! v̂~ v̂ !x2~ v̂21!~ v̂ ! ¯

~2! x2~3!x5
¯ ~ v̂ !x2~ v̂21!~ v̂ !xv̂~ v̂ !x2~ v̂21!~ v̂ ! v̂~ v̂ !x2~ v̂21!~ v̂ ! ¯

~1! x1~3!x3
¯ ~ v̂ !x2~ v̂21!~ v̂ !xv̂~ v̂ !x2~ v̂21!~ v̂ ! v̂~ v̂ !x2~ v̂21!~ v̂ ! ¯

~2 ! ~2!x3~4! ¯ ~ v̂ !x2~ v̂21!~ v̂ !xv̂~ v̂ !x2~ v̂21!~ v̂ ! v̂~ v̂ !x2~ v̂21!~ v̂ ! ¯ ← no car

~2! x2~3!x5
¯ ~ v̂ !x2~ v̂21!~ v̂ !xv̂~ v̂ !x2~ v̂21!~ v̂ ! v̂~ v̂ !x2~ v̂21!~ v̂ ! ¯ injected!

~1! x1~3!x3
¯ ~ v̂ !x2~ v̂21!~ v̂ !xv̂~ v̂ !x2~ v̂21!~ v̂ ! v̂~ v̂ !x2~ v̂21!~ v̂ ! ¯

~0! ~2!x3~4! ¯ ~ v̂ !x2~ v̂21!~ v̂ !xv̂~ v̂ !x2~ v̂21!~ v̂ ! v̂~ v̂ !x2~ v̂21!~ v̂ ! ¯

⇒no effect of disturbance
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APPENDIX B: DISTURBANCE AT THE END OF THE SYSTEM

~a! A A

•••x2~ v̂21! ~ v̂ ! xv̂ ~ v̂ ! x2~ v̂21! ~ v̂ !

••• ~ v̂ ! x2~ v̂21! ~ v̂ ! xv̂ ~ v̂ ! xv̂21

••• ~ v̂ ! x2~ v̂21! ~ v̂ ! xv̂

•••x2~ v̂21! ~ v̂ ! x2~ v̂21! ~0! ←blockage!

•••x2~ v̂21! ~ v̂ ! xv̂ ~ v̂22! xv̂22 ~1!

••• ~ v̂ ! x2~ v̂21! ~ v̂22! xv̂22 ~ v̂21! x1

••• ~ v̂ ! xv̂ ~ v̂ ! x2~ v̂22! ~ v̂21! x2----------------

••• ~ v̂ ! x2~ v̂21! ~ v̂ ! xv̂ ~ v̂ ! xv̂21 from here on

••• ~ v̂ ! xv̂ ~ v̂ ! x2~ v̂21! ~ v̂ ! xV̂ nothing reminds us

•••x2~ v̂21! ~ v̂ ! xv̂ ~ v̂ ! x2~ v̂21! ~ v̂ ! of the disturbance

~b! A A

••• ~ v̂ ! x2~ v̂21! ~ v̂ ! xv̂ ~ v̂ ! xv̂21

••• ~ v̂ ! xV̂ ~ v̂ ! x2~ v̂21! ~ v̂ ! xv̂

•••x2~ v̂21! ~ v̂ ! xv̂ ~ v̂ ! x2~ v̂21! ~ v̂ !

••• ~ v̂ ! x2~ v̂21! ~ v̂ ! xv̂ ~ v̂21! xv̂21 ←blockage!

••• xv̂ x2~ v̂21! ~ v̂21! xv̂21 ~ v̂ !

••• ~ v̂ ! xv̂ ~ v̂ ! x2v̂23 ~ v̂ ! x1 ----------------

••• ~ v̂ ! x2~ v̂21! ~ v̂ ! xv̂ ~ v̂ ! xv̂21 from here on

•••~ v̂ ! xv̂ ~ v̂ ! x2~ v̂21! ~ v̂ ! xv̂ nothing reminds us

•••x2~ v̂21! ~ v̂ ! xv̂ ~ v̂ ! x2~ v̂21! ~ v̂ ! of the disturbance

~c! A A

••• ~ v̂ ! xv̂ ~ v̂ ! x2~ v̂21! ~ v̂ ! xv̂

•••x2~ v̂21! ~ v̂ ! xv̂ ~ v̂ ! x2~ v̂21! ~ v̂ !

••• ~ v̂ ! x2~ v̂21! ~ v̂ ! xv̂ ~ v̂ ! xv̂21

••• ~ v̂ ! xv̂ ~ v̂ ! x2~ v̂21! ~ v̂ ! xv̂ ←blockage!

•••x2~ v̂21! ~ v̂ ! xv̂ ~ v̂ ! x2~ v̂21! ~ v̂ ! blockage

••• ~ v̂ ! x2~ v̂21! ~ v̂ ! xv̂ ~ v̂ ! xv̂21 has no

••• ~ v̂ ! xv̂ ~ v̂ ! x2~ v̂21! ~ v̂ ! xv̂ effect
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